Difference between revisions of "XML format description"
m (general structure) |
(zmin zmax) |
||
Line 45: | Line 45: | ||
Vectors are used for 3D vectors (e.g., rotation axis), but also to specify robot configurations (e.g., arm configurations). | Vectors are used for 3D vectors (e.g., rotation axis), but also to specify robot configurations (e.g., arm configurations). | ||
− | + | Examples: | |
<syntaxhighlight lang="xml"> | <syntaxhighlight lang="xml"> | ||
+ | <axis>0.0 0.0 1.0</axis> | ||
<left_arm>0.5 0.0 0.0 -0.16 0.0 -0.11 0.0</left_arm> | <left_arm>0.5 0.0 0.0 -0.16 0.0 -0.11 0.0</left_arm> | ||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 52: | Line 53: | ||
=== Transformation matrices === | === Transformation matrices === | ||
Transformation matrices are used to represent the initial poses of objects, or the initial pose of a robot's base. | Transformation matrices are used to represent the initial poses of objects, or the initial pose of a robot's base. | ||
− | A 3x4 transformation matrix | + | A 3x4 transformation matrix |
+ | [[File:tmatrix.gif|120px]] | ||
− | + | is represented by a 12-uplet (row-wise) as follow: | |
+ | '''<tag>'''a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3'''</tag>''' | ||
== Grasps == | == Grasps == | ||
Grasps can be specified in two ways: | Grasps can be specified in two ways: | ||
Line 66: | Line 69: | ||
<gf type="side_grasp">0.0 0.0 1.0 -0.005 0.0 1.0 0.0 0.005 -1.0 0.0 0.0 0.123</gf> | <gf type="side_grasp">0.0 0.0 1.0 -0.005 0.0 1.0 0.0 0.005 -1.0 0.0 0.0 0.123</gf> | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | + | In the case of continuous grasps, a template frame and a rotation axis are given: | |
<syntaxhighlight lang="xml"> | <syntaxhighlight lang="xml"> | ||
<gc type="top_grasp"> | <gc type="top_grasp"> | ||
Line 73: | Line 76: | ||
</gc> | </gc> | ||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | Any number/type of grasps can be combined within a '''<grasps>...</grasps>''' tag.<br /> | ||
+ | They refer to the object in which they are declared. | ||
== SSSP == | == SSSP == | ||
− | The surfaces supporting stable placements are specified by | + | The surfaces supporting stable placements are specified by 4 values (''xmin, xmax, ymin, ymax'') representing a rectangular region '''in the reference frame of the object'''. |
+ | <syntaxhighlight lang="xml" line="line"> | ||
+ | <sssp> | ||
+ | <xmin>-0.25<xmax><xmin>0.25<xmax> | ||
+ | <ymin>-0.25<ymax><ymin>0.25<ymax> | ||
+ | <zmin>0.5<zmax><zmin>0.5<zmax> | ||
+ | </sssp> | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <syntaxhighlight lang="xml" line="line"> | ||
+ | <sop> | ||
+ | <template>1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0</template> | ||
+ | <axis>0.0 0.0 1.0</axis> | ||
+ | </sop> | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | In the example below, the SSSP of ''disc2'' and ''disc3'' boils down to a single point because it is assumed that the discs should be perfectly aligned when stacked on top of each other. The SSSP of ''table'' is a rectangular area matching the position and dimensions of the surface of the table. | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 128: | Line 149: | ||
</grasps> | </grasps> | ||
<sssp> <!-- sssp = single point --> | <sssp> <!-- sssp = single point --> | ||
− | <xmin>0.0< | + | <xmin>0.0<xmax><xmin>0.0<xmax> |
− | <ymin>0.0< | + | <ymin>0.0<ymax><ymin>0.0<ymax> |
− | <zmin>0.065< | + | <zmin>0.065<zmax><zmin>0.065<zmax> |
</sssp> | </sssp> | ||
<sop> | <sop> | ||
Line 149: | Line 170: | ||
<moveable>false</moveable> | <moveable>false</moveable> | ||
<sssp> <!-- sssp = horizontal rectangular region --> | <sssp> <!-- sssp = horizontal rectangular region --> | ||
− | <xmin>-0.68< | + | <xmin>-0.68<xmax><xmin>0.0<xmax> |
− | <ymin>0.0< | + | <ymin>0.0<ymax><ymin>0.83<ymax> |
− | <zmin>0.78< | + | <zmin>0.78<zmax><zmin>0.78<zmax> |
</sssp> | </sssp> | ||
<sop>false</sop> <!-- does not really apply to the table (moveable=false) --> | <sop>false</sop> <!-- does not really apply to the table (moveable=false) --> |
Revision as of 17:18, 19 February 2018
The following describes the format used to wrap the geometric information describing the problem single XML file. Meshes, kinematic models and task domain/problem are given in separate files. The xml file contains information about the initial geometric state, and invariants such as grasps, surfaces supporting stable placements, stable objects poses, movability, initial attachments.
Contents
General structure
The file is overall structured as follows:
1 <problem>
2 <objects>
3 object1
4 object2
5 ...
6 </objects>
7
8 <robots>
9 robot1
10 robot2
11 ...
12 </robots>
13 </problem>
Grasps, SSSP, and SOP are relative to objects, therefore object description follows the following template:
1 <obj>
2 <name>obj1_name</name>
3 <geom>filename.obj</geom>
4 <pose>...</pose>
5 <moveable>true/false</moveable>
6 <grasps>
7 <gf>...</gf> and/or
8 <gc>...</gc>
9 </grasps>
10 <sssp>...</sssp>
11 <sop>...</sop>
12 <attachments>...</attachments>
13 </obj>
Parameters
All numerical values are expressed in standard units: meters (distances) and radians (angles).
Single values
Example:
<torso>0.15</tordo>
The initial value for the torso joint is 15cm.
Vectors
Vectors are used for 3D vectors (e.g., rotation axis), but also to specify robot configurations (e.g., arm configurations).
Examples:
<axis>0.0 0.0 1.0</axis>
<left_arm>0.5 0.0 0.0 -0.16 0.0 -0.11 0.0</left_arm>
Transformation matrices
Transformation matrices are used to represent the initial poses of objects, or the initial pose of a robot's base.
A 3x4 transformation matrix
is represented by a 12-uplet (row-wise) as follow:
<tag>a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3</tag>
Grasps
Grasps can be specified in two ways:
- discrete set of grasps: a list of grasp frames (<gf>...</gf>)
- continuous set of grasps: a template grasp and a rotation axis (<gc>...</gc>)
Xml attributes are used to specify grasp types (up to the TMP planner to use it or not):
<gf type="top_grasp">0.0 0.0 1.0 -0.0015 0.0 -1.0 0.0 0.027 1.0 0.0 0.0 -0.051</gf>
<gf type="side_grasp">0.0 0.0 1.0 -0.005 0.0 1.0 0.0 0.005 -1.0 0.0 0.0 0.123</gf>
In the case of continuous grasps, a template frame and a rotation axis are given:
<gc type="top_grasp">
<template>0.0 0.0 1.0 -0.0015 0.0 -1.0 0.0 0.027 1.0 0.0 0.0 -0.051</template>
<axis>0.0 0.0 1.0</axis>
</gc>
Any number/type of grasps can be combined within a <grasps>...</grasps> tag.
They refer to the object in which they are declared.
SSSP
The surfaces supporting stable placements are specified by 4 values (xmin, xmax, ymin, ymax) representing a rectangular region in the reference frame of the object.
1 <sssp>
2 <xmin>-0.25<xmax><xmin>0.25<xmax>
3 <ymin>-0.25<ymax><ymin>0.25<ymax>
4 <zmin>0.5<zmax><zmin>0.5<zmax>
5 </sssp>
1 <sop>
2 <template>1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0</template>
3 <axis>0.0 0.0 1.0</axis>
4 </sop>
In the example below, the SSSP of disc2 and disc3 boils down to a single point because it is assumed that the discs should be perfectly aligned when stacked on top of each other. The SSSP of table is a rectangular area matching the position and dimensions of the surface of the table.
Remark: A list of points defining a polygon may be used later for non trivial shapes.
SOP
The stable object poses are defined similarly to continuous grasps: a template rotation and a rotation axis (both expressed in the world frame of reference.
Remark: SSSP and SOP tags are simple xml nodes in the example, but we could aim at something more general and define them as lists. In this way, we could approximate non-square SSSP by several rectangles (or polygons), and similarly allow for several SOP for objects (upright, upside-down, lying on the side). (to be discussed)
Initial object attachments
Although this is not allowed in this problem, if disc2 was moved, disc1 would also move, just as a tray with objects on it. We can represent this as a list tied to the "parent" object.
Example
Example for problem1 (disc3 and pegs omitted for clarity).
1 <problem>
2 <objects>
3
4 <obj>
5 <name>disc1</name>
6 <geom>cylinder1.obj</geom>
7 <pose>1.0 0.0 0.0 0.7 0.0 1.0 0.0 0.2 0.0 0.0 1.0 0.028)</pose>
8 <moveable>true</moveable>
9 <grasps>
10 <!-- discrete set of grasps for that object -->
11 <gf>0.0 0.0 1.0 -0.0015 0.0 -1.0 0.0 0.027 1.0 0.0 0.0 -0.051</gf>
12 <gf>0.0 0.0 1.0 -0.0015 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 0.051</gf>
13 .....
14 </grasps>
15 <sssp>false</sssp> <!-- no sssp for disc1 -->
16 <sop>
17 <template>1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0</template> <!-- all z-rotations of the -->
18 <axis>0.0 0.0 1.0</axis> <!-- "natural" position -->
19 </sop>
20 <attachments>false</attachments> <!-- nothing attached to disc1 -->
21 </obj>
22
23 <obj>
24 <name>disc2</name>
25 <geom>cylinder2.obj</geom>
26 <pose>1.0 0.0 0.0 0.7 0.0 1.0 0.0 0.2 0.0 0.0 1.0 -0.038)</pose>
27 <moveable>true</moveable>
28 <grasps>
29 <!-- continuous set of grasps for that object -->
30 <gc>
31 <template>0.0 0.0 1.0 -0.0015 0.0 -1.0 0.0 0.027 1.0 0.0 0.0 -0.051</template>
32 <axis>0.0 0.0 1.0</axis>
33 </gc>
34 </grasps>
35 <sssp> <!-- sssp = single point -->
36 <xmin>0.0<xmax><xmin>0.0<xmax>
37 <ymin>0.0<ymax><ymin>0.0<ymax>
38 <zmin>0.065<zmax><zmin>0.065<zmax>
39 </sssp>
40 <sop>
41 <template>1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0</template> <!-- all z-rotations of the -->
42 <axis>0.0 0.0 1.0</axis> <!-- "natural" position -->
43 </sop>
44 <attachments> <!-- disc1 attached to disc2 -->
45 <name>disc1</name>
46 </attachments>
47 </obj>
48
49 ...
50
51 <obj>
52 <name>table</name>
53 <geom>table_narrow.obj</geom>
54 <pose>1.0 0.0 0.0 0.9 0.0 1.0 0.0 -0.4 0.0 0.0 1.0 -0.87)</pose>
55 <moveable>false</moveable>
56 <sssp> <!-- sssp = horizontal rectangular region -->
57 <xmin>-0.68<xmax><xmin>0.0<xmax>
58 <ymin>0.0<ymax><ymin>0.83<ymax>
59 <zmin>0.78<zmax><zmin>0.78<zmax>
60 </sssp>
61 <sop>false</sop> <!-- does not really apply to the table (moveable=false) -->
62 <attachments> <!-- does not apply, but for the sake of example -->
63 <name>peg1</name>
64 <name>peg2</name>
65 <name>peg3</name>
66 <name>disc3</name>
67 </attachments>
68 </obj>
69
70 ...
71
72 </objects>
73
74 <robots>
75 <robot>
76 <name>pr2</name>
77 <urdf>models/pr2.urdf</urdf> <!-- or some other format -->
78 <basepose>1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0)</basepose>
79 <movebase>false</movebase> <!-- in problems 1 and 2, the base should not move -->
80 <torso>0.1</torso>
81 <left_arm>0.5 0.0 0.0 -0.16 0.0 -0.11 0.0</left_arm>
82 <right_arm>-0.5 0.0 0.0 -0.16 0.0 -0.11 0.0</right_arm>
83 </robot>
84 </robots>
85
86 </problem>